Infinitely divisible metrics and curvature inequalities for operators in the Cowen-Douglas class

نویسندگان

  • Shibananda Biswas
  • Dinesh Kumar Keshari
  • Gadadhar Misra
چکیده

The curvature KT (w) of a contraction T in the Cowen-Douglas class B1(D) is bounded above by the curvature KS∗(w) of the backward shift operator. However, in general, an operator satisfying the curvature inequality need not be contractive. In this note, we characterize a slightly smaller class of contractions using a stronger form of the curvature inequality. Along the way, we find conditions on the metric of the holomorphic Hermitian vector bundle ET corresponding to the operator T in the Cowen-Douglas class B1(D) which ensures negative definiteness of the curvature function. We obtain a generalization for commuting tuples of operators in the class B1(Ω), for a bounded domain Ω in C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Special Generalized Douglas-Weyl Metrics

In this paper, we study a special class of generalized Douglas-Weyl metrics whose Douglas curvature is constant along any Finslerian geodesic. We prove that for every Landsberg metric in this class of Finsler metrics, ? = 0 if and only if H = 0. Then we show that every Finsler metric of non-zero isotropic flag curvature in this class of metrics is a Riemannian if and only if ? = 0.

متن کامل

Generalized Douglas-Weyl Finsler Metrics

In this paper, we study generalized Douglas-Weyl Finsler metrics. We find some conditions under which the class of generalized Douglas-Weyl (&alpha, &beta)-metric with vanishing S-curvature reduce to the class of Berwald metrics.

متن کامل

On 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type

‎In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five‎. ‎Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces‎. ‎Moreover‎, ‎we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...

متن کامل

Modeling of ‎I‎nfinite Divisible Distributions Using Invariant and Equivariant Functions

‎Basu’s theorem is one of the most elegant results of classical statistics‎. ‎Succinctly put‎, ‎the theorem says‎: ‎if T is a complete sufficient statistic for a family of probability measures‎, ‎and V is an ancillary statistic‎, ‎then T and V are independent‎. ‎A very novel application of Basu’s theorem appears recently in proving the infinite divisibility of certain statistics‎. ‎In addition ...

متن کامل

Multiplicity-free Homogeneous Operators in the Cowen-douglas Class

Abstract. In a recent paper, the authors have constructed a large class of operators in the Cowen-Douglas class Cowen-Douglas class of the unit disc D which are homogeneous with respect to the action of the group Möb – the Möbius group consisting of bi-holomorphic automorphisms of the unit disc D. The associated representation for each of these operators is multiplicity free. Here we give a dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. London Math. Society

دوره 88  شماره 

صفحات  -

تاریخ انتشار 2013